`
pleasetojava
  • 浏览: 702952 次
  • 性别: Icon_minigender_2
  • 来自: 上海
文章分类
社区版块
存档分类
最新评论

多线程编程

阅读更多

刚发现一个很好的多线程的讲解文章,intel的,给自己留下一个哈哈。

POSIX Threads Programming

Table of Contents

  1. Abstract
  2. Pthreads Overview
    1. What is a Thread?
    2. What are Pthreads?
    3. Why Pthreads?
    4. Designing Threaded Programs
  3. The Pthreads API
  4. Compiling Threaded Programs
  5. Thread Management
    1. Creating and Terminating Threads
    2. Passing Arguments to Threads
    3. Joining and Detaching Threads
    4. Stack Management
    5. Miscellaneous Routines
  6. Mutex Variables
    1. Mutex Variables Overview
    2. Creating and Destroying Mutexes
    3. Locking and Unlocking Mutexes
  7. Condition Variables
    1. Condition Variables Overview
    2. Creating and Destroying Condition Variables
    3. Waiting and Signaling on Condition Variables
  8. LLNL Specific Information and Recommendations
  9. Topics Not Covered
  10. Pthread Library Routines Reference
  11. References and More Information
  12. Exercise


Abstract


In shared memory multiprocessor architectures, such as SMPs, threads can be used to implement parallelism. Historically, hardware vendors have implemented their own proprietary versions of threads, making portability a concern for software developers. For UNIX systems, a standardized C language threads programming interface has been specified by the IEEE POSIX 1003.1c standard. Implementations that adhere to this standard are referred to as POSIX threads, or Pthreads.

The tutorial begins with an introduction to concepts, motivations, and design considerations for using Pthreads. Each of the three major classes of routines in the Pthreads API are then covered: Thread Management, Mutex Variables, and Condition Variables. Example codes are used throughout to demonstrate how to use most of the Pthreads routines needed by a new Pthreads programmer. The tutorial concludes with a discussion and examples of how to develop hybrid MPI/Pthreads programs in an IBM SMP environment. A lab exercise, with numerous example codes (C Language) is also included.

Level/Prerequisites: Ideal for those who are new to parallel programming with threads. A basic understanding of parallel programming in C is assumed. For those who are unfamiliar with Parallel Programming in general, the material covered in EC3500: Introduction To Parallel Computing would be helpful.



Pthreads Overview

What is a Thread?

  • Technically, a thread is defined as an independent stream of instructions that can be scheduled to run as such by the operating system. But what does this mean?
  • To the software developer, the concept of a "procedure" that runs independently from its main program may best describe a thread.
  • To go one step further, imagine a main program (a.out) that contains a number of procedures. Then imagine all of these procedures being able to be scheduled to run simultaneously and/or independently by the operating system. That would describe a "multi-threaded" program.
  • How is this accomplished?
  • Before understanding a thread, one first needs to understand a UNIX process. A process is created by the operating system, and requires a fair amount of "overhead". Processes contain information about program resources and program execution state, including:
    • Process ID, process group ID, user ID, and group ID
    • Environment
    • Working directory.
    • Program instructions
    • Registers
    • Stack
    • Heap
    • File descriptors
    • Signal actions
    • Shared libraries
    • Inter-process communication tools (such as message queues, pipes, semaphores, or shared memory).

    Unix Process Process-thread relationship
    UNIX PROCESS THREADS WITHIN A UNIX PROCESS
  • Threads use and exist within these process resources, yet are able to be scheduled by the operating system and run as independent entities largely because they duplicate only the bare essential resources that enable them to exist as executable code.
  • This independent flow of control is accomplished because a thread maintains its own:
    • Stack pointer
    • Registers
    • Scheduling properties (such as policy or priority)
    • Set of pending and blocked signals
    • Thread specific data.
  • So, in summary, in the UNIX environment a thread:
    • Exists within a process and uses the process resources
    • Has its own independent flow of control as long as its parent process exists and the OS supports it
    • Duplicates only the essential resources it needs to be independently schedulable
    • May share the process resources with other threads that act equally independently (and dependently)
    • Dies if the parent process dies - or something similar
    • Is "lightweight" because most of the overhead has already been accomplished through the creation of its process.
  • Because threads within the same process share resources:
    • Changes made by one thread to shared system resources (such as closing a file) will be seen by all other threads.
    • Two pointers having the same value point to the same data.
    • Reading and writing to the same memory locations is possible, and therefore requires explicit synchronization by the programmer.


Pthreads Overview

What are Pthreads?

  • Historically, hardware vendors have implemented their own proprietary versions of threads. These implementations differed substantially from each other making it difficult for programmers to develop portable threaded applications.
  • In order to take full advantage of the capabilities provided by threads, a standardized programming interface was required. For UNIX systems, this interface has been specified by the IEEE POSIX 1003.1c standard (1995). Implementations which adhere to this standard are referred to as POSIX threads, or Pthreads. Most hardware vendors now offer Pthreads in addition to their proprietary API's.
  • Pthreads are defined as a set of C language programming types and procedure calls, implemented with a pthread.h header/include file and a thread library - though the this library may be part of another library, such as libc.
  • There are several drafts of the POSIX threads standard. It is important to be aware of the draft number of a given implementation, because there are differences between drafts that can cause problems.


Pthreads Overview

Why Pthreads?

  • The primary motivation for using Pthreads is to realize potential program performance gains.
  • When compared to the cost of creating and managing a process, a thread can be created with much less operating system overhead. Managing threads requires fewer system resources than managing processes.

    For example, the following table compares timing results for the fork() subroutine and the pthreads_create() subroutine. Timings reflect 50,000 process/thread creations, were performed with the time utility, and units are in seconds, no optimization flags.

    Note: don't expect the sytem and user times to add up to real time, because these are SMP systems with multiple CPUs working on the problem at the same time. At best, these are approximations.

    Platform fork()pthread_create() real user sys real user sys
    AMD 2.4 GHz Opteron (8cpus/node) 41.07 60.08 9.01 0.66 0.19 0.43
    IBM 1.9 GHz POWER5 p5-575 (8cpus/node) 64.24 30.78 27.68 1.75 0.69 1.10
    IBM 1.5 GHz POWER4 (8cpus/node) 104.05 48.64 47.21 2.01 1.00 1.52
    INTEL 2.4 GHz Xeon (2 cpus/node) 54.95 1.54 20.78 1.64 0.67 0.90
    INTEL 1.4 GHz Itanium2 (4 cpus/node) 54.54 1.07 22.22 2.03 1.26 0.67
    View source code fork_vs_thread.txt
  • All threads within a process share the same address space. Inter-thread communication is more efficient and in many cases, easier to use than inter-process communication.
  • Threaded applications offer potential performance gains and practical advantages over non-threaded applications in several other ways:
    • Overlapping CPU work with I/O: For example, a program may have sections where it is performing a long I/O operation. While one thread is waiting for an I/O system call to complete, CPU intensive work can be performed by other threads.
    • Priority/real-time scheduling: tasks which are more important can be scheduled to supersede or interrupt lower priority tasks.
    • Asynchronous event handling: tasks which service events of indeterminate frequency and duration can be interleaved. For example, a web server can both transfer data from previous requests and manage the arrival of new requests.
  • The primary motivation for considering the use of Pthreads on an SMP architecture is to achieve optimum performance. In particular, if an application is using MPI for on-node communications, there is a potential that performance could be greatly improved by using Pthreads for on-node data transfer instead.
  • For example:
    • MPI libraries usually implement on-node task communication via shared memory, which involves at least one memory copy operation (process to process).
    • For Pthreads there is no intermediate memory copy required because threads share the same address space within a single process. There is no data transfer, per se. It becomes more of a cache-to-CPU or memory-to-CPU bandwidth (worst case) situation. These speeds are much higher.

      Platform MPI Shared Memory Bandwidth
      (GB/sec) Pthreads Worst Case
      Memory-to-CPU Bandwidth
      (GB/sec)
      IBM 375 MHz POWER3 0.5 16
      IBM 1.5 GHz POWER4 2.1 11
      Intel 1.4 GHz Xeon 0.3 4.3
      Intel 1.4 GHz Itanium 2 1.8 6.4


Pthreads Overview

Designing Threaded Programs

Parallel Programming:
  • On modern, multi-cpu machines, pthreads are ideally suited for parallel programming, and whatever applies to parallel programming in general, applies to parallel pthreads programs.
  • There are many considerations for designing parallel programs, such as:
    • What type of parallel programming model to use?
    • Problem partitioning
    • Load balancing
    • Communications
    • Data dependencies
    • Synchronization and race conditions
    • Memory issues
    • I/O issues
    • Program complexity
    • Programmer effort/costs/time
    • ...
  • Covering these topics is beyond the scope of this tutorial, however interested readers can obtain a quick overview in the Introduction to Parallel Computing tutorial.
  • In general though, in order for a program to take advantage of Pthreads, it must be able to be organized into discrete, independent tasks which can execute concurrently. For example, if routine1 and routine2 can be interchanged, interleaved and/or overlapped in real time, they are candidates for threading.
  • Programs having the following characteristics may be well suited for pthreads:
    • Work that can be executed, or data that can be operated on, by multiple tasks simultaneously
    • Block for potentially long I/O waits
    • Use many CPU cycles in some places but not others
    • Must respond to asynchronous events
    • Some work is more important than other work (priority interrupts)
  • Pthreads can also be used for serial applications, to emulate parallel execution. A perfect example is the typical web browser, which for most people, runs on a single cpu desktop/laptop machine. Many things can "appear" to be happening at the same time.
  • Several common models for threaded programs exist:
    • Manager/worker: a single thread, the manager assigns work to other threads, the workers. Typically, the manager handles all input and parcels out work to the other tasks. At least two forms of the manager/worker model are common: static worker pool and dynamic worker pool.
    • Pipeline: a task is broken into a series of suboperations, each of which is handled in series, but concurrently, by a different thread. An automobile assembly line best describes this model.
    • Peer: similar to the manager/worker model, but after the main thread creates other threads, it participates in the work.

Shared Memory Model:

  • All threads have access to the same global, shared memory
  • Threads also have their own private data
  • Programmers are responsible for synchronizing access (protecting) globally shared data. Shared Memory Model

Thread-safeness:

  • Thread-safeness: in a nutshell, refers an application's ability to execute multiple threads simultaneously without "clobbering" shared data or creating "race" conditions.
  • For example, suppose that your application creates several threads, each of which makes a call to the same library routine:
    • This library routine accesses/modifies a global structure or location in memory.
    • As each thread calls this routine it is possible that they may try to modify this global structure/memory location at the same time.
    • If the routine does not employ some sort of synchronization constructs to prevent data corruption, then it is not thread-safe.
threadunsafe
  • The implication to users of external library routines is that if you aren't 100% certain the routine is thread-safe, then you take your chances with problems that could arise.
  • Recommendation: Be careful if your application uses libraries or other objects that don't explicitly guarantee thread-safeness. When in doubt, assume that they are not thread-safe until proven otherwise. This can be done by "serializing" the calls to the uncertain routine, etc.


The Pthreads API


  • The Pthreads API is defined in the ANSI/IEEE POSIX 1003.1 - 1995 standard. Unlike MPI, this standard is not freely available on the Web - it must be purchased from IEEE.
  • The subroutines which comprise the Pthreads API can be informally grouped into three major classes:
    1. Thread management: The first class of functions work directly on threads - creating, detaching, joining, etc. They include functions to set/query thread attributes (joinable, scheduling etc.)
    2. Mutexes: The second class of functions deal with synchronization, called a "mutex", which is an abbreviation for "mutual exclusion". Mutex functions provide for creating, destroying, locking and unlocking mutexes. They are also supplemented by mutex attribute functions that set or modify attributes associated with mutexes.
    3. Condition variables: The third class of functions address communications between threads that share a mutex. They are based upon programmer specified conditions. This class includes functions to create, destroy, wait and signal based upon specified variable values. Functions to set/query condition variable attributes are also included.
  • Naming conventions: All identifiers in the threads library begin with pthread_

    Routine Prefix Functional Group
    pthread_ Threads themselves and miscellaneous subroutines
    pthread_attr_ Thread attributes objects
    pthread_mutex_ Mutexes
    pthread_mutexattr_ Mutex attributes objects.
    pthread_cond_ Condition variables
    pthread_condattr_ Condition attributes objects
    pthread_key_ Thread-specific data keys
  • The concept of opaque objects pervades the design of the API. The basic calls work to create or modify opaque objects - the opaque objects can be modified by calls to attribute functions, which deal with opaque attributes.
  • The Pthreads API contains over 60 subroutines. This tutorial will focus on a subset of these - specifically, those which are most likely to be immediately useful to the beginning Pthreads programmer.
  • For portability, the pthread.h header file should be included in each source file using the Pthreads library.
  • The current POSIX standard is defined only for the C language. Fortran programmers can use wrappers around C function calls. Some Fortran compilers (like IBM AIX Fortran) may provide a Fortram pthreads API.
  • A number of excellent books about Pthreads are available. Several of these are listed in the References section of this tutorial.
Compiling Threaded Programs

  • Some of the more commonly used compile commands for pthreads codes are listed in the table below.

    Compiler / Platform Compiler Command Description
    IBM
    AIX
    xlc_r / cc_r C (ANSI / non-ANSI)
    xlC_r C++
    xlf_r -qnosave
    xlf90_r -qnosave
    Fortran - using IBM's Pthreads API (non-portable)
    INTEL
    Linux
    icc -pthread C
    icpc -pthread C++
    PathScale
    Linux
    pathcc -pthread C
    pathCC -pthread C++
    PGI
    Linux
    pgcc -lpthread C
    pgCC -lpthread C++
    GNU
    Linux, AIX
    gcc -pthread GNU C
    g++ -pthread GNU C++


Thread Management

Creating and Terminating Threads

Routines:

Creating Threads:

  • Initially, your main() program comprises a single, default thread. All other threads must be explicitly created by the programmer.
  • pthread_create creates a new thread and makes it executable. This routine can be called any number of times from anywhere within your code.
  • pthread_create arguments:
    • thread: An opaque, unique identifier for the new thread returned by the subroutine.
    • attr: An opaque attribute object that may be used to set thread attributes. You can specify a thread attributes object, or NULL for the default values.
    • start_routine: the C routine that the thread will execute once it is created.
    • arg: A single argument that may be passed to start_routine. It must be passed by reference as a pointer cast of type void. NULL may be used if no argument is to be passed.
  • The maximum number of threads that may be created by a process is implementation dependent.
  • Once created, threads are peers, and may create other threads. There is no implied hierarchy or dependency between threads.

    Peer Threads

Question: After a thread has been created, how do you know when it will be scheduled to run by the operating system?

Thread Attributes:

  • By default, a thread is created with certain attributes. Some of these attributes can be changed by the programmer via the thread attribute object.
  • pthread_attr_init and pthread_attr_destroy are used to initialize/destroy the thread attribute object.
  • Other routines are then used to query/set specific attributes in the thread attribute object.
  • Some of these attributes will be discussed later.

Terminating Threads:

  • There are several ways in which a Pthread may be terminated:
    • The thread returns from its starting routine (the main routine for the initial thread).
    • The thread makes a call to the pthread_exit subroutine (covered below).
    • The thread is canceled by another thread via the pthread_cancel routine (not covered here).
    • The entire process is terminated due to a call to either the exec or exit subroutines.
  • pthread_exit is used to explicitly exit a thread. Typically, the pthread_exit() routine is called after a thread has completed its work and is no longer required to exist.
  • If main() finishes before the threads it has created, and exits with pthread_exit(), the other threads will continue to execute. Otherwise, they will be automatically terminated when main() finishes.
  • The programmer may optionally specify a termination status, which is stored as a void pointer for any thread that may join the calling thread.
  • Cleanup: the pthread_exit() routine does not close files; any files opened inside the thread will remain open after the thread is terminated.
  • Discussion: In subroutines that execute to completion normally, you can often dispense with calling pthread_exit() - unless, of course, you want to pass a return code back. However, in main(), there is a definite problem if main() completes before the threads it spawned. If you don't call pthread_exit() explicitly, when main() completes, the process (and all threads) will be terminated. By calling pthread_exit() in main(), the process and all of its threads will be kept alive even though all of the code in main() has been executed.

Example: Pthread Creation and Termination

  • This simple example code creates 5 threads with the pthread_create() routine. Each thread prints a "Hello World!" message, and then terminates with a call to pthread_exit().

    Example Code - Pthread Creation and Termination
    #include <pthread.h>
    #include <stdio.h>
    #define NUM_THREADS     5
    
    void *PrintHello(void *threadid)
    {
       int tid;
       tid = (int)threadid;
       printf("Hello World! It's me, thread #%d!\n", tid);
       pthread_exit(NULL);
    }
    
    int main (int argc, char *argv[])
    {
       pthread_t threads[NUM_THREADS];
       int rc, t;
       for(t=0; t<NUM_THREADS; t++){
          printf("In main: creating thread %d\n", t);
          rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
          if (rc){
             printf("ERROR; return code from pthread_create() is %d\n", rc);
             exit(-1);
          }
       }
       pthread_exit(NULL);
    }
    
    View source code View sample output


Thread Management

Passing Arguments to Threads

  • The pthread_create() routine permits the programmer to pass one argument to the thread start routine. For cases where multiple arguments must be passed, this limitation is easily overcome by creating a structure which contains all of the arguments, and then passing a pointer to that structure in the pthread_create() routine.
  • All arguments must be passed by reference and cast to (void *).
Question: How can you safely pass data to newly created threads, given their non-deterministic start-up and scheduling?
    Example 1 - Thread Argument Passing
      This code fragment demonstrates how to pass a simple integer to each thread. The calling thread uses a unique data structure for each thread, insuring that each thread's argument remains intact throughout the program.

    int *taskids[NUM_THREADS];
    
    for(t=0; t<NUM_THREADS; t++)
    {
       taskids[t] = (int *) malloc(sizeof(int));
       *taskids[t] = t;
       printf("Creating thread %d\n", t);
       rc = pthread_create(&threads[t], NULL, PrintHello, 
            (void *) taskids[t]);
       ...
    }
    
    View source code View sample output

    Example 2 - Thread Argument Passing
      This example shows how to setup/pass multiple arguments via a structure. Each thread receives a unique instance of the structure.

    struct thread_data{
       int  thread_id;
       int  sum;
       char *message;
    };
    
    struct thread_data thread_data_array[NUM_THREADS];
    
    void *PrintHello(void *threadarg)
    {
       struct thread_data *my_data;
       ...
       my_data = (struct thread_data *) threadarg;
       taskid = my_data->thread_id;
       sum = my_data->sum;
       hello_msg = my_data->message;
       ...
    }
    
    int main (int argc, char *argv[])
    {
       ...
       thread_data_array[t].thread_id = t;
       thread_data_array[t].sum = sum;
       thread_data_array[t].message = messages[t];
       rc = pthread_create(&threads[t], NULL, PrintHello, 
            (void *) &thread_data_array[t]);
       ...
    }
    
    View source code View sample output

    Example 3 - Thread Argument Passing (Incorrect)
      This example performs argument passing incorrectly. The loop which creates threads modifies the contents of the address passed as an argument, possibly before the created threads can access it.

    int rc, t;
    
    for(t=0; t<NUM_THREADS; t++) 
    {
       printf("Creating thread %d\n", t);
       rc = pthread_create(&threads[t], NULL, PrintHello, 
            (void *) &t);
       ...
    }
    
    View source code View sample output


Thread Management

Joining and Detaching Threads

Routines:

Joining:

  • "Joining" is one way to accomplish synchronization between threads. For example:

    Joining

  • The pthread_join() subroutine blocks the calling thread until the specified threadid thread terminates.
  • The programmer is able to obtain the target thread's termination return status if it was specified in the target thread's call to pthread_exit().
  • A joining thread can match one pthread_join() call. It is a logical error to attempt multiple joins on the same thread.
  • Two other synchronization methods, mutexes and condition variables, will be discussed later.

Joinable or Not?

  • When a thread is created, one of its attributes defines whether it is joinable or detached. Only threads that are created as joinable can be joined. If a thread is created as detached, it can never be joined.
  • The final draft of the POSIX standard specifies that threads should be created as joinable. However, not all implementations may follow this.
  • To explicitly create a thread as joinable or detached, the attr argument in the pthread_create() routine is used. The typical 4 step process is:
    1. Declare a pthread attribute variable of the pthread_attr_t data type
    2. Initialize the attribute variable with pthread_attr_init()
    3. Set the attribute detached status with pthread_attr_setdetachstate()
    4. When done, free library resources used by the attribute with pthread_attr_destroy()
Detaching:
  • The pthread_detach() routine can be used to explicitly detach a thread even though it was created as joinable.
  • There is no converse routine.

Recommendations:

  • If a thread requires joining, consider explicitly creating it as joinable. This provides portability as not all implementations may create threads as joinable by default.
  • If you know in advance that a thread will never need to join with another thread, consider creating it in a detached state. Some system resources may be able to be freed.

Example: Pthread Joining

    Example Code - Pthread Joining
      This example demonstrates how to "wait" for thread completions by using the Pthread join routine. Since some implementations of Pthreads may not create threads in a joinable state, the threads in this example are explicitly created in a joinable state so that they can be joined later.

    #include <pthread.h>
    #include <stdio.h>
    #define NUM_THREADS	3
    
    void *BusyWork(void *null)
    {
       int i;
       double result=0.0;
       for (i=0; i<1000000; i++)
       {
         result = result + (double)random();
       }
       printf("result = %e\n",result);
       pthread_exit((void *) 0);
    }
    
    int main (int argc, char *argv[])
    {
       pthread_t thread[NUM_THREADS];
       pthread_attr_t attr;
       int rc, t, status;
    
       /* Initialize and set thread detached attribute */
       pthread_attr_init(&attr);
       pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
    
       for(t=0; t<NUM_THREADS; t++)
       {
          printf("Creating thread %d\n", t);
          rc = pthread_create(&thread[t], &attr, BusyWork, NULL); 
          if (rc)
          {
             printf("ERROR; return code from pthread_create() 
                    is %d\n", rc);
             exit(-1);
          }
       }
    
       /* Free attribute and wait for the other threads */
       pthread_attr_destroy(&attr);
       for(t=0; t<NUM_THREADS; t++)
       {
          rc = pthread_join(thread[t], (void **)&status);
          if (rc)
          {
             printf("ERROR; return code from pthread_join() 
                    is %d\n", rc);
             exit(-1);
          }
          printf("Completed join with thread %d status= %d\n",t, status);
       }
    
       pthread_exit(NULL);
    }
    
    View source code View sample output


Thread Management

Stack Management

Routines:

Preventing Stack Problems:

  • The POSIX standard does not dictate the size of a thread's stack. This is implementation dependent and varies.
  • Exceeding the default stack limit is often very easy to do, with the usual results: program termination and/or corrupted data.
  • Safe and portable programs do not depend upon the default stack limit, but instead, explicitly allocate enough stack for each thread by using the pthread_attr_setstacksize routine.
  • The pthread_attr_getstackaddr and pthread_attr_setstackaddr routines can be used by applications in an environment where the stack for a thread must be placed in some particular region of memory.

Some Practical Examples at LC:

  • Default thread stack size varies greatly. The maximum size that can be obtained also varies greatly, and may depend upon the number of threads per node.

    Node
    Architecture #CPUs Memory (GB) Default Size
    (bytes)
    AMD Opteron 8 16 2,097,152
    Intel IA64 4 8 33,554,432
    Intel IA32 2 4 2,097,152
    IBM Power5 8 32 196,608
    IBM Power4 8 16 196,608
    IBM Power3 16 16 98,304

Example: Stack Management

    Example Code - Stack Management
      This example demonstrates how to query and set a thread's stack size.

    #include <pthread.h>
    #include <stdio.h>
    #define NTHREADS 4
    #define N 1000
    #define MEGEXTRA 1000000
     
    pthread_attr_t attr;
     
    void *dowork(void *threadid)
    {
       double A[N][N];
       int i,j;
       size_t mystacksize;
     
       pthread_attr_getstacksize (&attr, &mystacksize);
       printf("Thread d%: stack size = %li bytes \n", threadid, mystacksize);
       for (i=0; i<N; i++)
         for (j=0; j<N; j++)
          A[i][j] = ((i*j)/3.452) + (N-i);
       pthread_exit(NULL);
    }
     
    int main(int argc, char *argv[])
    {
       pthread_t threads[NTHREADS];
       size_t stacksize;
       int rc, t;
     
       pthread_attr_init(&attr);
       pthread_attr_getstacksize (&attr, &stacksize);
       printf("Default stack size = %li\n", stacksize);
       stacksize = sizeof(double)*N*N+MEGEXTRA;
       printf("Amount of stack needed per thread = %li\n",stacksize);
       pthread_attr_setstacksize (&attr, stacksize);
       printf("Creating threads with stack size = %li bytes\n",stacksize);
       for(t=0; t<NTHREADS; t++){
          rc = pthread_create(&threads[t], &attr, dowork, (void *)t);
          if (rc){
             printf("ERROR; return code from pthread_create() is %d\n", rc);
             exit(-1);
          }
       }
       printf("Created %d threads.\n", t);
       pthread_exit(NULL);
    }
    


Thread Management

Miscellaneous Routines

    pthread_self ()

    pthread_equal (thread1,thread2)

  • pthread_self returns the unique, system assigned thread ID of the calling thread.
  • pthread_equal compares two thread IDs. If the two IDs are different 0 is returned, otherwise a non-zero value is returned.
  • Note that for both of these routines, the thread identifier objects are opaque and can not be easily inspected. Because thread IDs are opaque objects, the C language equivalence operator == should not be used to compare two thread IDs against each other, or to compare a single thread ID against another value.

    pthread_once (once_control, init_routine)
  • pthread_once executes the init_routine exactly once in a process. The first call to this routine by any thread in the process executes the given init_routine, without parameters. Any subsequent call will have no effect.
  • The init_routine routine is typically an initialization routine.
  • The once_control parameter is a synchronization control structure that requires initialization prior to calling pthread_once. For example:

    pthread_once_t once_control = PTHREAD_ONCE_INIT;

    pthread_yield ()
  • pthread_yield forces the calling thread to relinquish use of its processor, and to wait in the run queue before it is scheduled again.


Mutex Variables

Overview

  • Mutex is an abbreviation for "mutual exclusion". Mutex variables are one of the primary means of implementing thread synchronization and for protecting shared data when multiple writes occur.
  • A mutex variable acts like a "lock" protecting access to a shared data resource. The basic concept of a mutex as used in Pthreads is that only one thread can lock (or own) a mutex variable at any given time. Thus, even if several threads try to lock a mutex only one thread will be successful. No other thread can own that mutex until the owning thread unlocks that mutex. Threads must "take turns" accessing protected data.
  • Mutexes can be used to prevent "race" conditions. An example of a race condition involving a bank transaction is shown below:

    Thread 1 Thread 2 Balance
    Read balance: $1000 $1000
    Read balance: $1000 $1000
    Deposit $200 $1000
    Deposit $200 $1000
    Update balance $1000+$200 $1200
    Update balance $1000+$200 $1200
  • In the above example, a mutex should be used to lock the "Balance" while a thread is using this shared data resource.
  • Very often the action performed by a thread owning a mutex is the updating of global variables. This is a safe way to ensure that when several threads update the same variable, the final value is the same as what it would be if only one thread performed the update. The variables being updated belong to a "critical section".
  • A typical sequence in the use of a mutex is as follows:
    • Create and initialize a mutex variable
    • Several threads attempt to lock the mutex
    • Only one succeeds and that thread owns the mutex
    • The owner thread performs some set of actions
    • The owner unlocks the mutex
    • Another thread acquires the mutex and repeats the process
    • Finally the mutex is destroyed
  • When several threads compete for a mutex, the losers block at that call - an unblocking call is available with "trylock" instead of the "lock" call.
  • When protecting shared data, it is the programmer's responsibility to make sure every thread that needs to use a mutex does so. For example, if 4 threads are updating the same data, but only one uses a mutex, the data can still be corrupted.


Mutex Variables

Creating and Destroying Mutexes

Routines:

https://computing.llnl.gov/tutorials/images/arrowBull

分享到:
评论

相关推荐

    Java多线程编程实战指南(核心篇)

    Java多线程编程实战指南(核心篇) 高清pdf带目录 随着现代处理器的生产工艺从提升处理器主频频率转向多核化,即在一块芯片上集成多个处理器内核(Core),多核处理器(Multicore Processor)离我们越来越近了――如今...

    C#多线程编程实战 源代码

    本书是一本通俗易懂的C#多线程编程指南,通过70多个容易理解的示例,循序渐进地讲解C#5.0中的异步及并发编程,引导读者了解Windows下C#多线程编程的多样性。 通过阅读本书,你将学到: 使用原始线程、异步线程,...

    多线程编程(完整版)

    多线程编程 完美介绍多线程想过技术  进程和线程都是操作系统的概念。进程是应用程序的执行实例,每个进程是由私有的虚拟地址空间、代码、数据和其它各种系统资源组成,进程在运行过程中创建的资源随着进程的终止而...

    vc多线程编程简单介绍vc多线程编程简单介绍vc多线程编程简单介绍

    vc多线程编程简单介绍vc多线程编程简单介绍vc多线程编程简单介绍

    Windows多线程编程

    Windows多线程编程Windows多线程编程Windows多线程编程Windows多线程编程Windows多线程编程Windows多线程编程Windows多线程编程

    C#多线程编程实例实战.doc

    C#多线程编程实例实战.doc

    MFC多线程编程

    MFC多线程编程 MFC多线程编程 MFC多线程编程

    多线程编程技术详解

    但是对于要在最短的时间内迅速掌握多线程编程,相关的书籍是很难提供办到的,因此则需要一个实用而系统的教程。本视频教程就是要完成这个目标,看完这个系列的视频教程后,大家就可以熟练地完成本讲座的综合题,...

    《Windows多线程编程技术与实例》-郝文化-书和源码

    本书通过众多实例介绍了如何实现Windows下的多线程编程,既重点介绍了Win32API下的多线程编程和MFC下的多线程编程,又介绍了多线程机制在网络编程、图形编程和数据库中的应用。本书每一章都从简单的多线程实例出发...

    C#多线程编程实例实战.pdf

    C#多线程编程实例实战.pdf

    linux多线程编程.pdf

    linux多线程编程.pdf

    SUN多线程编程指南(PDF中文版)

    SUN多线程编程指南(PDF文档 中文版) 《多线程编程指南》介绍了SolarisTM 操作系统(Solaris Operating System, Solaris OS)中 POSIX®线程和Solaris 线程的多线程编程接口。本指南将指导应用程序程序员如何创建新...

    C++面向对象多线程编程

    《C++面向对象多线程编程》共分13章,全面讲解构建多线程架构与增量多线程编程技术。第1章介绍了用于构建面向对象程序的不同类型C++组件,以及如何使用这些组件来构建多线程架构。第2、3、4章简要介绍进程、线程、多...

    c++多线程编程的十个例子

    C++多线程的十个例子,学习window下多线程编程

    Linux系统下的多线程编程入门.pdf

    Linux系统下的多线程编程入门.pdf Linux系统下的多线程编程入门.pdf Linux系统下的多线程编程入门.pdf Linux系统下的多线程编程入门.pdf Linux系统下的多线程编程入门.pdf Linux系统下的多线程编程入门.pdf Linux...

    Java多线程编程技术

    《Java多线程编程核心技术》建议猿友们读两遍,因为其写得没有那么抽象,第一遍有些概念不是很理解,可以先跳过并记录起来,第一遍阅读的目的主要是了解整个架构。第二遍再慢慢品味,并贯穿全部是指点来思考,并将...

    多线程编程指南.pdf

    多线程编程指南多线程编程指南多线程编程指南多线程编程指南

    JAVA多线程编程技术PDF

    JAVA多线程编程技术PDF,是最经典的那个版本,多线程的所有知识点完爆读者

    java 多线程编程实战指南(核心 + 设计模式 完整版)

    Java 高并发编程相关知识, 接下来将阅读该书, 并且进行比较详细的总结, 好记性不如烂笔头, 加油。 Java 多线程编程实战指南。

    Linux下的多线程编程.pdf

    Linux下的多线程编程.pdf

Global site tag (gtag.js) - Google Analytics